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Evolutionary graph theory

How does stuff propagate through networks?

I coronavirus among humans

I influence (opinion, gossip, fake news) on social media

I genetic mutation in a population of individual organisms
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Evolutionary graph theory

Evolutionary biology 101:

I Evolution acts on populations

I Individuals: bacteria in a Petri dish, cells in a tissue, birds in
an archipelago, . . .

I Individuals reproduce (sexually/asexually) and die

I type = genetic information, alters the fitness

Two main forces:

1. mutation: generates variety

2. selection: reduces variety

When mutations are rare: What is the fate of a single new mutant?
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Model: Moran process on a graph

[Moran ’58] [LHN, Nature ’05] A graph G = (V ,E ) on n nodes.

I Nodes: individuals (fitness: residents 1, mutants r ≥ 1)

I Moran Birth-death process on a graph. Repeat:

1. Birth: Pick a node for reproduction, proportionally to fitness
2. Death: Pick a neighbor, randomly
3. Replace

mutant

resident

fitness
r

1
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Some features of the Moran process

mutant

resident

fitness
r

1

1. It is stochastic (random).

2. In some steps, nothing happens.

3. Nodes can toggle back and forth (more opinions than gossip).

4. Eventually, all nodes become the same type (no mutation).

5. Variants exist (e.g. death-Birth updating).

Quantities of interest:

1. Fixation probability fpr (G ): Average probability that, starting
from a single node, mutants spread to all sites.

2. Fixation time Tr (G ): Average time until one type wins.
I Measured in steps or better in generations.
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Computing fpr(G )
Claim. fpr (G ) can be computed by solving a system of 2n linear
equations.

S

S1

S2

S3

p1

p2p3

p4

Proof. Suppose G has n nodes. There are 2n configurations of
nodes occupied by mutants. For each configuration S, let
fpr (G ,S) be the fixation probability if mutants initially occupy S.
Then

fpr (G ,S) =
∑

S′
pS→S′ · fpr (G ,S ′)

and fpr (G , ∅) = 0, fpr (G , [n]) = 1.
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Special case: r = 1

Claim. fpr (Kn) =

1/n.

On any G , when r = 1 then fixation probability is additive, that is,

fpr (G ,S) =
∑

v∈S
fpr (G , {v}).

→ It suffices to solve a system of n equations.
→ Also, fpr (G ) = 1/n for any graph Gn on n nodes.

Claim. When G is undirected then fpr (G , {v}) ∝ 1/ deg(v).
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Special case: Complete graph Kn and r > 1

(n− k) · 1k · r
p+k = kr

F ·
n−k
n−1

p−k = n−k
F · k

n−1

p+
k

p−
k

= r}
F = kr + (n− k)

It turns out that we are always r -times more likely to gain than to
lose a mutant. Thus the process can be mapped to a
1-dimensional random walk, with a constant forward bias r .

# mutants. . .0 1 2 k

Claim. fpr (Kn) = 1−1/r
1−1/rn →n→∞ 1− 1/r .

(Intuition. Let x = 1− fpr (Kn). Then x = 1
r+1 · 1 + r

r+1 · x2.)
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Special case: Regular graphs Rn

Claim (Isothermal theorem, ’05). For any regular graph we have

fpr (Rn) = fpr (Kn).

Proof. The same mapping works! We say that an edge is active if
its endpoints are of different types. Each active edge is r -times
more likely to be used in gaining rather than losing a mutant.

p+ ∼ r · 1
4

p− ∼ 1 · 1
4

12



But #steps on regular graphs differ

p+ ∼ r · 1
4

p− ∼ 1 · 1
4

(n− k) · 1k · r

Intuition. If a of E edges are active, then, on average, roughly one
in every E/a steps is active.

# mutants. . .0 1 2 k

→ #steps for Kn ∼ c · n +
∑

k
n2

k(n−k)
∼ Θ(n log n)

→ #steps for Sqn is O(n
√
n) and Ω(n log n).

Kn: #edges ∼ n2, #active edges ∼ k(n− k)

Sqn: #edges ∼ 4n, #active edges ∈ (
√
k, 4k)
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#steps on large square grids

Intuition. Most of the time, the boundary should have size
√
k , so

#steps for Sqn ∼ c · n +
∑

k

n√
k
∼ n ·

√
n.
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Bounding fixation time through edge expansion

Denote boundary of S ⊆ V as ∂S .

Definition. Cheeger (isoperimetric) constant

i(G) ∶= min{
∣∂S ∣

∣S ∣
∶ S ⊆ V ,0 < ∣S ∣ ≤ ∣V ∣/2}

Theorem. [DGRS ’16] #steps for d-regular graph G is at most

2 ⋅ d ⋅ n ⋅Hn

i(G) ⋅ fprmin(G)
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Bounding fixation time for any graph [DGMRSS ’14]

Consider potential function ϕ(S) ∶= ∑u∈S 1/deg(u).

Set of mutants over time: X0,X1,X2, . . . ⊆ V .
F (S) = r ∣S ∣ + (n − ∣S ∣) is total fitness.

E[ϕ(Xt+1)−ϕ(Xt) ∣ Xt = S] =
r − 1

F (S)
∑

(u,v)∈∂S

1

deg(u)
⋅

1

deg(v)
≥
1 − 1/r

n3

... thus #steps is at most

ϕ(G) −E[ϕ(X0)]

fprmin(G)
⋅

n3

1 − 1/r
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Directed graphs

Some directed graphs have exponentially long fixation time

Theorem. [DGRS ’16] D-regular digraphs fixate quickly.
Theorem. [BNT ’23+] For Eulerian digraph with min degree δ and
max degree ∆,

r ≥∆/δ Ô⇒ #steps at most poly(n).
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Approximating fixation probabilities in directed graphs

Could try running simulations, but only works if fixation time is
short!

Theorem. [BNT ’23+] For r ≥ 1, FPRAS for computing fpr(G) if
fpr=1min(G) ≥ 1/poly(n)
Intuition. When r = 1, fixation probabilities satisfy

fpr=1(G ,{v}) ∑
u∶u→v∈E

1

deg+(u)
=

1

deg+(v)
∑

w ∶v→w∈E

fpr=1(G ,{w})

for each v ∈ V .
Then a coupling and averaging argument gives a bound on #steps
with r ≥ 1 using only quantities involving r = 1.
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Approximating fixation probabilities in directed graphs

Consider similar model expect:

▸ residents never reproduce

▸ “density” constraints

Theorem. [ICN ’15]

▸ Deciding whether fpr(G) > 0 is NP-complete

▸ Approximating fpr(G) is #P-complete
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Open questions

▸ Explicit formula for fpr=1(G ,{u}) for each u ∈ V ?

▸ Exist graphs where increasing r slows down fixation time
[BNT ’23+]. Why?

▸ Slowest/fastest fixating directed graphs? probability vs time
tradeoffs?

▸ Tighter bounds on complexity of computing fixation
probabilities

▸ What does “time” mean if population size is not constant?
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