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Evolutionary graph theory

How does stuff propagate through networks?

I coronavirus among humans

I influence (opinion, gossip, fake news) on social media

I genetic mutation in a population of individual organisms
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Model: Moran process on a graph

[Moran ’58] [LHN, Nature ’05] A graph G = (V ,E ) on n nodes.

I Nodes: individuals (fitness: residents 1, mutants r ≥ 1)

I Moran Birth-death process on a graph. Repeat:

1. Birth: Pick a node for reproduction, proportionally to fitness
2. Death: Pick a neighbor, randomly
3. Replace

mutant

resident

fitness
r

1
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Some features of the Moran process

mutant

resident

fitness
r

1

1. It is stochastic (random).

2. In some steps, nothing happens.

3. Nodes can toggle back and forth (more opinions than gossip).

4. Eventually, all nodes become the same type (no mutation).

5. Variants exist (e.g. death-Birth updating).

Quantities of interest:

1. Fixation probability fpr (G ): Average probability that, starting
from a single node, mutants spread to all sites.

2. Fixation time Tr (G ): Average time until one type wins.
I Measured in steps or better in generations.
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Special case: Complete graph Kn and r > 1

(n− k) · 1k · r
p+k = kr

F ·
n−k
n−1

p−k = n−k
F · k

n−1

p+
k

p−
k

= r}
F = kr + (n− k)

It turns out that we are always r -times more likely to gain than to
lose a mutant. Thus the process can be mapped to a
1-dimensional random walk, with a constant forward bias r .

# mutants. . .0 1 2 k

Claim. fpr (Kn) = 1−1/r
1−1/rn →n→∞ 1− 1/r .

(Intuition. Let x = 1− fpr (Kn). Then x = 1
r+1 · 1 + r

r+1 · x2.)
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Special case: Regular graphs Rn

Claim (Isothermal theorem, ’05). For any regular graph we have

fpr (Rn) = fpr (Kn).

Proof. The same mapping works! We say that an edge is active if
its endpoints are of different types. Each active edge is r -times
more likely to be used in gaining rather than losing a mutant.

p+ ∼ r · 1
4

p− ∼ 1 · 1
4
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But #steps on regular graphs differ

p+ ∼ r · 1
4

p− ∼ 1 · 1
4

(n− k) · 1k · r

Intuition. If a of E edges are active, then, on average, roughly one
in every E/a steps is active.

# mutants. . .0 1 2 k

→ #steps for Kn ∼ c · n +
∑

k
n2

k(n−k)
∼ Θ(n log n)

→ #steps for Sqn is O(n
√
n) and Ω(n log n).

Kn: #edges ∼ n2, #active edges ∼ k(n− k)

Sqn: #edges ∼ 4n, #active edges ∈ (
√
k, 4k)
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Simulations can be slow on directed graphs

1/3

1/2

1/2

d d d

1/3

. . .
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Directed graphs

[B-Nowak-Tkadlec ’23+]

1. If r is large enough, fixation occurs quickly.

2. If graph is Eulerian and r is slightly larger than ratio between
max degree and min degree, fixation occurs quickly.

3. For some graphs (even undirected), increasing mutant
advantage can result in

::::::
longer

:::::::
fixation

::::::
times.

4. If neutral evolution (i.e. r = 1) fixation probabilities are
moderately large, then fixation occurs quickly and can quickly
approximate fixation probabilities when mutant has advantage
(i.e. r > 1).

5. If graph is balanced, fixation occurs quickly for any r ≥ 1.



Directed graphs

[B-Nowak-Tkadlec ’23+]

1. If r is large enough, fixation occurs quickly.

2. If graph is Eulerian and r is slightly larger than ratio between
max degree and min degree, fixation occurs quickly.

3. For some graphs (even undirected), increasing mutant
advantage can result in

::::::
longer

:::::::
fixation

::::::
times.

4. If neutral evolution (i.e. r = 1) fixation probabilities are
moderately large, then fixation occurs quickly and can quickly
approximate fixation probabilities when mutant has advantage
(i.e. r > 1).

5. If graph is balanced, fixation occurs quickly for any r ≥ 1.



Directed graphs

[B-Nowak-Tkadlec ’23+]

1. If r is large enough, fixation occurs quickly.

2. If graph is Eulerian and r is slightly larger than ratio between
max degree and min degree, fixation occurs quickly.

3. For some graphs (even undirected), increasing mutant
advantage can result in

::::::
longer

:::::::
fixation

::::::
times.

4. If neutral evolution (i.e. r = 1) fixation probabilities are
moderately large, then fixation occurs quickly and can quickly
approximate fixation probabilities when mutant has advantage
(i.e. r > 1).

5. If graph is balanced, fixation occurs quickly for any r ≥ 1.



Directed graphs

[B-Nowak-Tkadlec ’23+]

1. If r is large enough, fixation occurs quickly.

2. If graph is Eulerian and r is slightly larger than ratio between
max degree and min degree, fixation occurs quickly.

3. For some graphs (even undirected), increasing mutant
advantage can result in

::::::
longer

:::::::
fixation

::::::
times.

4. If neutral evolution (i.e. r = 1) fixation probabilities are
moderately large, then fixation occurs quickly and can quickly
approximate fixation probabilities when mutant has advantage
(i.e. r > 1).

5. If graph is balanced, fixation occurs quickly for any r ≥ 1.



Directed graphs

[B-Nowak-Tkadlec ’23+]

1. If r is large enough, fixation occurs quickly.

2. If graph is Eulerian and r is slightly larger than ratio between
max degree and min degree, fixation occurs quickly.

3. For some graphs (even undirected), increasing mutant
advantage can result in

::::::
longer

:::::::
fixation

::::::
times.

4. If neutral evolution (i.e. r = 1) fixation probabilities are
moderately large, then fixation occurs quickly and can quickly
approximate fixation probabilities when mutant has advantage
(i.e. r > 1).

5. If graph is balanced, fixation occurs quickly for any r ≥ 1.



Directed graphs

[B-Nowak-Tkadlec ’23+]

1. If r is large enough, fixation occurs quickly.

2. If graph is Eulerian and r is slightly larger than ratio between
max degree and min degree, fixation occurs quickly.

3. For some graphs (even undirected), increasing mutant
advantage can result in

::::::
longer

:::::::
fixation

::::::
times.

4. If neutral evolution (i.e. r = 1) fixation probabilities are
moderately large, then fixation occurs quickly and can quickly
approximate fixation probabilities when mutant has advantage
(i.e. r > 1).

5. If graph is balanced, fixation occurs quickly for any r ≥ 1.



Balanced graphs

[B-Nowak-Tkadlec ’23+]

▸ If graph is balanced, fixation occurs quickly for any r ≥ 1.

1

deg−(v) ⋅ ∑u∶u→v∈E

1

deg+(u) =
1

deg+(v) ⋅ ∑
w ∶v→w∈E

1

deg−(w)

a b c d

v?

v?

Superstar Multipartite graph Book graph Fan graph
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Games on directed graphs

▸ Directed graph G = (V ,E)
▸ death-Birth updating

▸ Given death node v ∈ V , fitness of u ∈ Γ−(v) is 1 −w +wP
where P is total payoff from playing games with nodes in
Γ−(v)

Mutant Resident
Mutant r r
Resident 1 1

Cooperate Defect
Cooperate b − c −c
Defect b 0

for r > 1 and b > c > 0.
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